Prothesensteuerung. Die Entwicklung von Neuroprothesen für das zentrales Nervensystem (ZNS) ist ein interdisziplinäres Forschungsfeld, das von Bereichen der molekularen und elektrochemischen Biophysik bis hin zu psychologischen und kognitiven Aspekten reicht. Das heutige Implementierungsniveau enthält viele offene Forschungspunkte, wie zum Beispiel die Neurologie, die physikalische Abmessung implantierbarer Elektroden sowie deren Spannungsversorgung. Im Rahmen unserer Forschung werden die theoretische Basis für die Entwicklung einer neuralen Prothese entwickelt und die zugrundeliegenden phänomenologischen Modelle erforscht.

Brain-Computer-Interfaces bzw. Brain-Machine-Interfaces. In vielen Fällen neurologischer Erkrankungen kommen Brain-Computer-Interfaces bzw. Brain-Machine-Interfaces zum Einsatz. So ist es bei Patienten mit ALS oder anderen vollständig Gelähmten ist es nicht mehr möglich, auf unmittelbarem Weg mit den Patienten zu kommunizieren. Eine weitere Anwendung ist in der Rehabiltation von Schlaganfallpatienten gegeben, wobei hierbei der Wille des Patienten detektiert werden soll, um eine therapeutische Bewegung durchzuführen. Durch den Einsatz von EEG, ECoG, fMRT oder MEG können in diesen Fällen Signale gemessen, ausgewertet und zur Steuerung von Computeranwendungen wie etwa virtuellen Schreibmaschinen, Webbrowsern, (therapeutischen) Roboter oder weiteren Endgeräten verwendet werden. Durch den Einsatz von Methoden aus dem Bereich des maschinellen Lernens lassen sich Trainingszeit und -aufwand des Patienten verringern. Darüber hinaus lässt sich mithilfe stimulierender Elektroden sogar eine bidirektionale Kommunikation erreichen (Bidirectional Cortical Communication Interface, BCCI).

Ausgewählte Publikationen

  • P. Gerjets, C. Walter, W. Rosenstiel, M. Bogdan, T. Zander
    Cognitive state monitoring and the design of adaptive instruction in digital environments: lessons learned from cognitive workload assessment using a passive brain-computer interface approach | LINK

    Frontiers in Neuroscience 8:385, 2014

  • Y. Mohamad, D.T. Hettich, E. Bolinger, N. Birbaumer, W. Rosenstiel, M. Bogdan, T. Matuz
    Detection and Utilization of Emotional State for Disabled Users | LINK

    Computers Helping People with Special Needs, Lecture Notes in Computer Science Vol. 8547, pp 248-255, 2014

  • M. Bensch, S. Martens, S. Halder, J. Hill, F. Nijboer, A. Ramos, N. Birbaumer, M. Bogdan, B. Kotchoubey, W. Rosenstiel, B. Schölkopf, A. Gharabaghi
    Assessing attention and cognitive function in completely locked-in state with event-related brain potentials and epidural electrocorticography | LINK

    Journal of Neural Engineering 11 026006, 2014

  • A. Walter, G. Naros, M. Spüler, W. Rosenstiel, A. Gharabaghi, M. Bogdan
    Dynamics of a Stimulation-evoked ECoG Potential During Stroke Rehabilitation – A Case Study

    NEUROTECHNIX 2013 – International Congress on Neurotechnology, Electronics and Informatics, p.241-243, 2013

  • A. Walter, A. Ramos Murguialday, M. Spüler, G. Naros, M. T. Leao, A. Gharabaghi, W. Rosenstiel, N. Birbaumer, M. Bogdan
    Coupling BCI and cortical stimulation for brain-state-dependent stimulation: Methods for spectral estimation in the presence of stimulation after-effects | LINK

    Frontiers in Neural Circuits, 2012

  • D. Brugger, S. Butovas, M. Bogdan, C. Schwarz
    Real-time adaptive microstimulation increases reliability of electrically evoked cortical potentials

    IEEE Transaction on Biomedical Engineering, Vol. 58, No. 5, pp. 1483-1491, 2011

  • M. Franke, M. Bogdan
    Self Organized Real Time Control of an Anthropomorphic Hand using Nerve Signals

    13th ISPO World Congress and ORTHOPAEDIE + REHA-TECHNIK 2010, Leipzig, 2010

  • M. Franke, M. Bogdan
    An Enhanced Kinematic model of the Human Thumb for an Artificial Hand

    Proceedings of the Third International Conference on Biomedical Electronics and Devices, INSTICC, Valencia, pp. 206—210, 2010

  • M. Schröder, T. M. Lal, T. Hinterberger, M. Bogdan, N. J. Hill, N. Birbaumer, W. Rosenstiel, B. Schölkopf
    Robust EEG Channel Selection Across Subjects for Brain Computer Interfaces

    EURASIP Journal on Applied Signal Processing, Special Issue: Trends in Brain Computer Interfacesk Volume 2005, Issue 19, 2005.

  • T. M. Lal, M. Schröder, T. Hinterberger, J. Weston, M. Bogdan, N. Birbaumer, B. Schölkopf
    Support Vector Channel Selection in BCI

    IEEE Trans. on Biomedical Engineering, Vol. 51, No. 6, pp. 1003-1010, 2004